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Abstract

Perturb-and-MAP [1] is a technique for efficiently drawing approximate samples
from discrete probabilistic graphical models. These samples are useful for both
characterizing the uncertainty in the model, as well as learning its parameters. In
this work, we show that this same technique is effective at learning features from
images using graphical models with complex dependencies between variables. In
particular, we apply this technique in order to learn the parameters of a latent-
variable model, the restricted Boltzmann machine, with additional higher-order
potentials. We also use it in a bipartite matching model to learn features that
are specifically tailored to tracking image patches in video sequences. Our final
contribution is the proposal of a novel method for generating perturbations.

1 Introduction

Probablistic graphical models provide a natural and powerful way to represent uncertainty about
predictions; unfortunately, sampling from all but the simplest models is often computationally ex-
pensive and thus makes learning particularly challenging. The difficulty arises from the fact that di-
rectly computing the partition function is usually intractable. A common solution is to use Markov
chain Monte Carlo methods; however, in practice, Markov chains may converge slowly, and as a
result these methods may be too inefficient to be used during learning.

On the other hand, for many classes of models, efficient discrete optimization algorithms have been
developed to perform exact MAP inference (i.e., finding the most probable configuration of ran-
dom variables), even though computing the partition function is intractable. If such optimization
algorithms can be leveraged to perform sampling, efficient sampling algorithms can be potentially
obtained for many classes of models where efficient MAP inference can be performed. Motivated by
this goal, Papandreou and Yuille [1] proposed a method called Perturb-and-MAP that can perform
one-shot approximate sampling from discrete-label Markov random fields (MRFs) using existing
MAP inference algorithms. It works by perturbing the entries in potential tables by random noise
and then takes the MAP configuration based on the perturbed potentials as a sample.

Perturb-and-MAP has been successfully demonstrated to be effective for pairwise Markov random
fields, however to our knowledge its application to other kinds of graphical models has been limited.
There are two possible reasons for this: it is not always obvious how to design the perturbations and
MAP inference is often itself quite difficult.

In this paper, we apply the Perturb-and-MAP framework to graphical models with latent variables
and high-order potentials. Our motivating theme is using these to learn features from images. The
first model we consider is the cardinality restricted Boltzmann machine (CaRBM) [2] and the second
is a bipartite matching model for tracking image patches in video sequences. We further show how
for these models and others, a new class of perturbations can be designed.



2 Background

Perturb-and-MAP is a sampling method that leverages existing optimization algorithms for perform-
ing MAP inference. If MAP inference can be performed efficiently, Perturb-and-MAP can leverage
this to draw approximate samples. In the context of discrete-label MRFs, Perturb-and-MAP works
by perturbing potentials with random noise, and then performing MAP inference on the model with
perturbed potentials.

At its core, Perturb-and-MAP relies on the following fact:

Fact. Ifeq,... e, ~ iid Gumbel(0,1), then P(ay + ¢, = max;{a; + ¢;}) = %.

Throughout this paper, Gumbel(u, 3) denotes the maximum form of the Gumbel distribution, whose
cdf is given by e=¢~ "7,

It follows from the above fact that if the negative energy of each joint configuration is perturbed with
ii.d. standard Gumbel noise, Perturb-and-MAP yields an exact sample from the MRF. Of course,
doing this in practice is intractable, since the number of joint configurations scales exponentially
in the number of random variables. As an approximation, all entries in unary potential tables and
some entries in pairwise and higher-order potential tables may be perturbed with standard Gumbel
noise independently. It has been shown empirically that this reduced-order perturbation produces
qualitatively similar results as perturbing the negative energy of each joint configuration.

3 Cardinality Restricted Boltzmann Machines

The cardinality restricted Boltzmann machine [2] is an extension of the restricted Boltzmann ma-
chine (RBM) that enforces a sparsity constraint over hidden units. It has been shown that CaRBMs
are able to extract features that are more interpretable than those extracted by standard RBMs.

The CaRBM adds a prior 1, on the hidden units to the probability distribution defined by the stan-
dard RBM:

P(v,h) = % exp(h’Wv +b’h + CTV)wk(Z h;) (1)
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where () is defined to be 1 if x < k and 0 otherwise, v € {0,1}” and h € {0, 1}¥ are binary
random variables representing visible and hidden units respectively, W € RF*P b € R c € RY
are model parameters representing weights between all visible and hidden units, biases on hidden
units and biases on visible units respectively, and Z is the partition function.

One of the main challenges in training a CaRBM is in computing P (h|v); unlike a standard RBM,
each hidden unit in a CaRBM is not conditionally independent of other hidden units given all visible
units. Swersky et al. [2] proposed an algorithm for exactly computing P(h|v) in O(KF’) time,
which will be referred to as the exact marginalization algorithm. Using Perturb-and-MAP, we can
devise more efficient approximate sampling algorithms by leveraging a plethora of existing selection
algorithms. To draw an approximate sample, we first independently perturb the total input to each
hidden unit with standard logistic noise and then find the hidden units with the %k largest inputs
using a selection algorithm. If the prune-and-search selection algorithm [3] is used to perform MAP
inference, an approximate sample can be drawn in O(F’) time. This is significantly faster than the
exact marginalization algorithm, especially for large k.

4 Bipartite Matching

Many problems in artificial intelligence involve finding the correct matching in a bipartite graph. For
example, in computer vision, one often needs to find the correct matching between key points in a
pair of related images. Solving this problem is central to many applications, such as image stitching,
stereo reconstruction and video tracking. For this problem, we are given image patches around each
key point in each image, and the ground truth matching between key points in each pair of images in
the training set. The aim is to learn a good descriptor for image patches that will facilitate matching
in a pair of test frames.



Consider a directed model ¢ parameterized by 6 that maps the data to some feature space. Our model
defines a probability distribution over match matrices based on the Euclidean distance between
points in feature space:

PM30) = 2 exp(—50 3 i 66k 0) — 90 O TS min) [T ma) - @)

where 1)(z) is defined to be 1 if x = 1 and 0 otherwise, M € {0,1}¥*¥ are binary random
variables representing a match matrix, m;; is entry (¢, j) in M representing if ith key point in frame
1 and the jth key point in frame 2 match, and x; € R” and x; € R” are vectors representing input
data associated with the ¢th key point in frame 1 and the jth key point in frame 2 respectively.

During training, the log probabilities of the ground truth match matrices are maximized with respect
to 6 using stochastic gradient ascent. In the case where ¢ is linear, i.e., ¢(x; W) = Wx, in order to

compute an estimate of the gradient, we need to estimate Exr[> -, ; mi; (Wx; — Wx[)(x; — x;-)T]

with a sample from P(M; W). As computing the partition function of P(M; W) is known to be #P-
hard, sampling from P(M; W) is challenging. On the other hand, finding the MAP configuration
of M can be done in just O(N?) time using the Hungarian algorithm. Therefore, if the model is
perturbed with noise from the right distribution, we can draw approximate samples in O(N?) time
by leveraging this existing MAP inference algorithm.

5 Designing Perturbations for Sampling Match Matrices

Consider a more general form of the probability distribution defined in equation 2:
1
P(M) = gexp(; mwﬂl;[%ff(;mw)fi[w(;mw) 3)

where ¢;; denotes the compatibility score between the ith key point in frame 1 and the jth key point
in frame 2 and all other symbols are as defined in equation 2. Intuitively, the compatibility score
between a pair of data examples represents the degree of preference for matching the pair.

The challenge with applying Perturb-and-MAP to this model is in designing perturbations to c;;’s
so that the distribution of MAP configurations approximates the model distribution. As noted in
[1] and section 2 on the preceding page, perturbing the negative energy of all configurations of
M with i.i.d. standard Gumbel noise would yield a procedure that draws exact samples from the
model distribution. For Perturb-and-MAP to be tractable, perturbations must be applied to a subset
of the N! configurations. One approach is to apply it to the N? compatibility scores; however,
this introduces dependencies among the perturbed energies of different configurations. Here we
consider if it is nevertheless possible to design perturbations so that the negative perturbed energy
of each configuration follows the standard Gumbel distribution.

Observe that for any configuration with a positive probability mass, the negative energy can be
expressed as ), ¢; ;). Where m(i) = j such that m;; = 1 (j exists and is unique because any
configuration with ;Mg # 1 has a probability mass of zero). The negative perturbed energy is
therefore ), (c; m(;) + €;). Our goal is to find distributions that ¢; should be drawn from so that
>, € ~ Gumbel(0,1).

We construct the distributions by first finding a distribution D(1) such that if X ~ Gumbel(0,1),
Y ~D1)and X LY, X +Y ~ Gumbel(0,2). Since the probability density function (pdf)
of a sum of independent random variables is simply the convolution of the pdf’s of the individual
random variables, we found the pdf of D(1) numerically by deconvolving the pdf of Gumbel(0, 1)
out of the pdf of Gumbel(0, 2). The pdf of D(1) is shown in Figure 1a on the next page along with
the pdf of Gumbel(0, 1) for comparison.

D(s) is defined in terms of D(1), with s denoting scale, so that if Z ~ D(1), sZ ~ D(s). Since
if X ~ Gumbel(0,1), sX ~ Gumbel(0,s), it follows that if X ~ Gumbel(0,s), Y ~ D(s)
and X L Y, X +Y ~ Gumbel(0,2s). By applying this fact recursively, it is easy to see that if
X ~ Gumbel(0,2=N-1)Y; ~ D27 fori € {1,...,N —1}and X L Y; L ... L Yn_q,
X+, Y ~ Gumbel(0,1).
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Figure 1: (a) The pdfs of D(1) and Gumbel(0, 1). (b) Reconstruction errors while training CaRBMs
using exact marginalization vs. Perturb-and-MAP. (c) Prediction errors of logistic regression on
features extracted by CaRBMs trained using exact marginalization vs. Perturb-and-MAP.

Therefore, if we independently perturb each ¢;; with noise from D(27¢) for i € {1,..., N — 1} and
each ¢ ; with noise from Gumbel (0, 2-(N—1) ), the negative perturbed energy of each positive-mass
configuration is guaranteed to follow a standard Gumbel distribution. We are currently exploring this
approach compared to commonly used logistic or normal perturbations.

6 Experiments

6.1 Cardinality Restricted Boltzmann Machine

We trained CaRBMs with 500 hidden units and a sparsity of 10% (i.e., Kk = 50) on the MNIST
handwritten digit dataset using both the exact marginalization method and Perturb-and-MAP to
sample the hidden units given the visible units. They are trained using the one-step Contrastive
Divergence algorithm [4]. As shown in Figure 1b, training with Perturb-and-MAP is faster and
achieves lower reconstruction error than training the same model with exact marginalization.

We compare the discriminative capability of the features learned by each method by applying them
to a logistic regression classifier. For the exact method, we use the marginals, while for the Perturb-
and-MAP approach we approximate the marginals with 50 samples. As shown in Figure 1c, logistic
regression achieves lower prediction error when features extracted using the CaRBM trained with
Perturb-and-MAP are used, indicating that better features are extracted when the CaRBM is trained
with Perturb-and-MAP.

6.2 Bipartite Matching

We trained our linear bipartite matching model on a dataset [5] consisting of frames from a video
of giraffes, locations of key points in each frame, and the ground truth matching between the key
points in each pair of frames. The task is to predict matching between key points in arbitrary (i.e.,
not necessarily consecutive) pairs of frames.

Figure 2a on the following page shows two frames from the video along with the key points and
ground truth matching. As shown, the patches around different key points are visually similar to
each other; as a result, predicting the match from patches is challenging. Furthermore, patches
around some key points, like those on the left and right front legs, can be easily confused with one
another.

We trained two linear bipartite matching models, one on 65 x 65 patches and SIFT descriptors
centered at key points, and one on patches only. Both models have 2000 features corresponding
to patches, and the former also has an additional 128 features corresponding to SIFT descriptors.
In the former model, we assume that there are no weight connections between features for SIFT
descriptors and the input patches, and vice versa. We initialized the weights with the first 2000
principal components of the patches for both models and all 128 principal components of the SIFT
descriptors for the former model. In each iteration of training, we uniformly sampled all frame
distances from 5 to 30 and then randomly picked a pair of frames given the sampled frame distance
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Figure 2: (a) Two frames from the giraffe video dataset with the locations of key points and the
ground truth matching. (b) Comparison of average test error rates achieved by our linear bipartite
matching models, pixel distance, SIFT descriptors and PCA distance on the giraffe video dataset.
The shaded areas show three standard deviations from the mean error rates estimated from 20 runs.

as training examples. The gradient was estimated using one approximate sample drawn using the
procedure described in section 5 on page 3.

We compare our models to three benchmarks, pixel distance, SIFT descriptors, and PCA distance.
For pixel distance and SIFT descriptors, matching is predicted based on the Euclidean distance
between patches and SIFT descriptors of pairs of key points respectively. For PCA distance, patches
of key points are projected onto the first 2000 principal components and their corresponding SIFT
descriptors are projected onto all 128 principal components. Matching is predicted based on the
Euclidean distance in this new space.

As shown in Figure 2b, our linear bipartite matching model achieves significantly lower error rates
than all benchmarks for pairs of frames that are more than 12 frames apart. This indicates that
unlike the benchmarks which mostly predict matching based on visual similarity of entire patches,
our models learned which parts of the patches contain important features for matching. For pairs
of frames that are less than 8 frames apart, it is not surprising that all methods performed similarly,
as visual similarity between entire patches of the same key point is quite high. As a result, even a
benchmark as simple as pixel distance can achieve relatively good performance for nearby frames.
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